Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>3</td>
</tr>
<tr>
<td>The Radio System</td>
<td>4</td>
</tr>
<tr>
<td>The RailBoss Control Board</td>
<td>4</td>
</tr>
<tr>
<td>Installation</td>
<td>6</td>
</tr>
<tr>
<td>Setup and Testing</td>
<td>8</td>
</tr>
<tr>
<td>Manual Operation</td>
<td>10</td>
</tr>
<tr>
<td>Command Summary (Mode 2 Transmitter)</td>
<td>12</td>
</tr>
<tr>
<td>Command Summary (Mode 1 Transmitter)</td>
<td>13</td>
</tr>
<tr>
<td>Trouble Shooting Manual Operation</td>
<td>14</td>
</tr>
<tr>
<td>Automated Operation</td>
<td>15</td>
</tr>
<tr>
<td>Trouble Shooting Automated Operation</td>
<td>16</td>
</tr>
<tr>
<td>DIP Switch Programming</td>
<td>17</td>
</tr>
<tr>
<td>Throttle Programming Functions</td>
<td>19</td>
</tr>
<tr>
<td>Throttle Programming Procedure</td>
<td>19</td>
</tr>
<tr>
<td>Throttle Programming Command Summary</td>
<td>20</td>
</tr>
<tr>
<td>Specifications</td>
<td>20</td>
</tr>
<tr>
<td>Recommended Radio Systems</td>
<td>22</td>
</tr>
<tr>
<td>RailBoss Product Comparison</td>
<td>22</td>
</tr>
<tr>
<td>Wiring Diagram</td>
<td>23</td>
</tr>
</tbody>
</table>
Overview

The 2.4GHz RailBoss R/C is an electronic speed control designed specifically for controlling large scale trains using low cost readily available 4-Channel 2.4GHz hobby radios. The RailBoss R/C system provides extreme flexibility in the way you control your trains. You have full manual radio control of all the speed, direction, and sound functions; along with semi-automatic control of station stop and sound functions, all selectable from the transmitter. Or you can just sit back and let your train run automatically, making station stops now and then, and blowing the whistle on occasion.

Manual speed and sound functions include a proportional throttle, momentum control, direction control (with constant directional lighting), and manual sound triggers for the bell and whistle.

Automate your layout with automated station stops, or back ‘n forth trolley operation. Gain control over your track magnet triggered sounds. You decide when and how often they are activated. All of these functions are user programmable.

Many aspects of the throttle are also programmable to match your specific needs; i.e. double-heading locos, realistic response, and speed limiting for children.

2.4GHz technology, DSSS (Direct Sequence Spread Spectrum) and FHSS (Frequency Hopping Spread Spectrum) have completely changed the way radio controlled hobbies operate. No longer do you have to worry about frequencies or channels. Your transmitter controls your receiver (or receivers) and no one else’s. The radio interference generated by the electric motors powering our locos is no longer a problem. Radio range no longer needs to be discussed, because it is far greater than needed, under all conditions. And with antennae lengths of only 1", installations are simple. But best of all, this technology is now available at low cost.

RailBoss R/C controls your locomotive using a standard 4-channel stick transmitter. For a Mode 2 radio, the left stick controls the speed functions: proportional throttle (Up = Max Speed, Down = Zero Speed) and momentum (Right = Enabled, Left = Disabled). The right stick controls direction (Up = Forward, Down = Reverse), and manual sound triggers (Right = Whistle/Horn, Left = Bell). The right stick also has many other uses, as explained in detail later.

Turn off the transmitter when not in use to save the transmitter batteries. The RailBoss R/C will maintain your present speed and continue to perform station stops, if enabled.

A powerful little micro-controller handles all of the control logic and sends signals to a full 5 amp motor driver, which is enough to handle most locomotives pulling a full train.

Directional lighting outputs are provided for incandescent lamps and/or LEDs without the need for added resistors.

User programmable options give you control over many of the operating parameters, without a computer.

The RailBoss R/C kit consists of a circuit board (2.9” X 1.9”), four cables to connect your receiver to the RailBoss, and a one reed switch for automated operations. You need to supply the 2.4GHZ transmitter and receiver.

To complete your battery power conversion, you will also need to provide a power on/off switch, charging jack, battery pack, and battery charger. To make this task easier, we recommend our “Battery Conversion Module”, which contains a power on/off switch, charging jack, and fast acting fuse. This simplifies the wiring and eliminates most of the soldering. It also provides power distribution to your sound board and other accessories.
The Radio System

The radio system is not included with the purchase of your RailBoss, but is readily available on-line or at your local hobby shop.

The RailBoss is designed to operate using 2.4GHZ 4-Channel radios with a proportional throttle stick. 2.4GHZ technology has revolutionized radio control. Details of how DSSS (Direct Sequence Spread Spectrum) and FHSS (Frequency Hopping Spread Spectrum) work are beyond the scope of this manual, but here is the short version … the radio is constantly changing frequencies and comparing signals at a high rate of speed, often using dual antennae or dual receivers. The results are …

- Radio range far exceeding the needs of garden railroading under most conditions.
- NO interference from locomotive motors or other radio/noise sources. No filters or special antenna care required.
- Multiple operators can run at the same time without regard to frequency or channel assignments. Your receivers will only respond to your transmitter due to a “Binding” process.
- Multiple receivers bound to the same transmitter will respond to the same commands. This allows for double-heading and multiple-loco operations.

One transmitter can be used to run all of your trains using one or more locomotives per train. However running multiple trains at the same time will require one transmitter per train. The receiver(s) aboard each train must be bound to their respective transmitter.

During the “Binding” process, the receiver reads the transmitter’s unique identification code. From then on, it will only respond to commands identified by that code. Binding is fairly simple and only needs to be done once. Refer to your transmitter manual for details.

The RailBoss supplies the power to the receiver through the 3-wire cable, so no connections are required to the BAT/BIND terminals. These terminals will only be used if a binding plug is required during the binding process.

Antenna routing and orientation really isn’t critical. If you have a dual antenna receiver, ideally each antenna should be in a perpendicular plane to the other. If your receiver is mounted inside a metal body, you will obtain the best reception by routing the antenna outside of the metal body.

See list of “Recommended Radio Systems” at the end of this manual.

The RailBoss Control Board

RailBoss is an ESC (Electronic Speed Control). It converts the signals intended to drive an analog servo into useful commands for operating a powerful 5 amp PWM (pulse width modulation) motor driver. It differs from the ESCs designed for R/C cars because the RailBoss is designed to allow nice slow prototypical speed control of your locomotive using the proportional throttle stick and 256 speed steps; i.e. the position of the throttle stick corresponds to the speed of the locomotive from minimum to maximum. Adding momentum to the throttle enhances the prototypical operation. Momentum is fully programmable, and can be turned off via the transmitter to assist with switching operations.

RailBoss provides power to your receiver and gets its R/C commands using the four receiver cables provided. It operates over a wide range of battery voltage inputs (8-30 volts; that’s 8-20 NiMh or NiCad cells). The battery input is protected from damage due to reverse polarity, and also has an on-board resettable fuse.
RailBoss has directional lighting outputs capable of driving incandescent lamps or LEDs without the need for user supplied resistors. Lamps are powered from the battery voltage. LEDs are powered from a current source. The front and rear lights follow the direction of the locomotive. The front light is also used as feedback to the operator during start-up, calibration, and programming procedures.

RailBoss can also be used to perform unlimited station stops and/or back 'n forth point to point operations using track magnets. This function can be enabled or disabled at will via the transmitter. Upon detecting a track magnet via the supplied reed switch, the train will automatically decelerate to a smooth stop, wait for a pre-determined amount of time, then accelerate back to the same speed it was running before.

RailBoss gives you more control over your sound system. The bell and whistle can be controlled manually from the transmitter, as well as automatically from the track magnets, via opto-isolated outputs.

RailBoss adds interest and intrigue to your layout by randomizing the automated events. Both station stops and the automatic whistle can be programmed to operated statistically; i.e. they will only occur a certain percentage of the time, as determined by your needs. They can also be enabled or disabled via the transmitter during operation.

RailBoss allows the user to customize many operating parameters to meet the needs of their layout. An on-board DIP switch, push-button, and LED control up to 16 different parameters, each with many options available.

RailBoss also allows the operating characteristics of the throttle to be customized for maximum speed control resolution, and speed matching of locomotives.
Installation

Track Power to Battery Power Conversion
All track powered locomotives are very simple, electrically. Track power is picked up from the rails via pickups and usually connected directly to the motor. Sometimes there are switches in the circuit to reverse polarity or turn off track power. These connections need to be modified in order to properly connect the battery powered driver board.

Converting to battery power consists of these basic steps.

1. **Determine battery voltage requirements.**
 Before you disturb any wiring, run your locomotive at the fastest speed you like to run on your layout and measure the track voltage. Add at least 2 volts to this measurement to account for low batteries and driver losses. If using NiCad or NiMh batteries, round this value up to the nearest 1.2v increment, and you have the number of cells you need.

 For example: Track voltage measures 11.6V at speed. \((11.6 + 2)/1.2 = 11.3\). You will need at least 12 cells. \(12 \times 1.2V = 14.4V\). (14.4V is a popular value for steam locomotives. Many critters can run on 12V. Diesels usually require 18V or more).

2. **Disconnect the track power pickups.**
 By isolating your locomotive from track power, you can run more than one locomotive on the same track at the same time, either battery powered or track powered. If you don’t do this, your battery will be directly connected to your track power supply, resulting in damage. Note that in doing this, you have also removed power from all lighting circuits, smoke units, and any other accessories that were running from track power. For battery power, smoke units are usually not used due to the high current requirements that will quickly drain the battery pack. Understanding existing wiring and/or circuit boards without documentation can be difficult. You may choose to just remove it all and wire directly to things you can see and understand.

3. **Find a direct connection to the motor.**
 The output of the controller needs to be connected directly to the motor. All other control boards and switches should be removed from the circuit. Depending on the design of the locomotive, this may be an extremely simple process, or it may be difficult. Some motor blocks make it very simple. You will find two pairs of wires. One set goes to the track pickups, and the other goes to the motor. You can verify which pair goes to the track pickups using a continuity checker or ohmmeter. Track pickups will have continuity from one pin to one set of wheels. The motor will read a small resistance value across the two wires (e.g. 18 ohms). Simply disconnect the track pickup pair and connect the motor pair to the controller.

4. **Install the discrete components and wire them together**
 (battery pack, power on/off switch, fuses, charging jack, controller, Receiver, and lights)
 Installing the new components is a packaging exercise. Where will it all fit? Space for the battery pack and control board and receiver is usually the biggest consideration. For smaller locos you may need to install some of all of the system in a trailing car. The G-Scale Graphics “Battery Power Conversion Module makes installation easier in many cases by putting the on/off switch, fuse, and charging jack all one small circuit board with screw terminals to eliminate soldering.

Wiring
Always use stranded wire and tin the ends with solder prior to making any connections. Wiring for the power input and motor output circuitry on terminals 18 thru 21 needs to be heavier gauge wire (20 or 22 Ga.) Any wiring connections or splices not directly connected to a component must be covered. Use heat shrink tubing or wire nuts.

Skills
All connections to the RailBoss Control can be made via screw terminals. However, basic wiring and soldering skills may be required to make proper connections to the power on/off switch and charging jack. Some drilling and minor fabrication or modifications to the unit under conversion may also be required.

Tools & Materials
A low wattage soldering iron, side cutters, needle-nose pliers, wire strippers, a 1/16” or 5/64” slotted screwdriver, resin core solder, 22 Ga. Wire, and heat shrink tubing are recommended to properly complete the wiring. A suitable drill and double-sided foam tape may be useful for mounting components.
Installation of the Receiver
The receiver should be mounted as far away from the motor as possible, and as high up as possible. If you have a receiver with dual antennas, ideally they should be mounted in perpendicular planes, but this isn’t critical. 2.4GHz antennas are only about 1” long. If you have one that appears to be about 12” long, it is really a coaxial cable 11” long, with the last 1” acting as the antenna. Do not cut the antenna wire to shorten it. The length just allows you to position the 2nd antenna away from the first. You may also have a receiver that has a “satellite” receiver with its own antenna. Just mount it away from the other receiver, if possible, but again not critical. Plug the supplied cables into the receiver. These are standard R/C connectors that are “supposedly” polarized to only plug in one way, but in many cases they will go in either way. Consult the receiver manual for your system to insure proper orientation, but normally the data wire (single white wire) goes towards the inside of the receiver. Connect per the wiring diagram at the end of this manual. The 3-wire cable is built to standards used by Futaba, HiTec, and JR Radios (Red (+) in the middle, with Blk (-), and Wht (data) on either side.

Installation of the RailBoss Control Board
The RailBoss board can be mounted most anywhere, but allow space for access to wiring, and no metal should be in contact with the board. The power components (heat sink and large metal tabs) will get hot, so keep them out of direct contact with plastic. Holes in the corners of the board can be used for PCB stand-offs. Make sure the stand-offs don’t touch any circuit board components. Or double-sided foam tape on the bottom side of board can be used to secure the board to a plastic surface. Handle the board by the edges, avoiding direct contact with the circuitry. Static electricity can damage the components. Try to ground yourself by touching something metal prior to handling the board. Refer to the wiring diagrams at the end of this manual.

Power Input (Battery)
The RailBoss Control will not function below 8v input at terminals 18(+), 19(-). Reverse polarity will not cause damage, but the RailBoss will not operate. This product is not intended for track power applications where polarity reverses.

The higher the voltage the more heat the RailBoss heat sink will produce. Voltage in excess of 30V will damage circuit board components. Battery packs of 8 to 20 cells are suitable (nominal 9.6 to 24.0V). A 20 cell pack can charge up to 30.0V. An 8 cell pack can discharge to 8.0V.

Warning! The heat sink on the voltage regulator may be extremely hot, especially when running in reverse. Enough to burn you if touched, or melt any plastic it comes in contact with.

When making wiring connections to the battery pack, use extreme caution to avoid shorting the leads together. Do not connect the battery to the circuit until all other wiring has been completed. The battery pack should have a quick disconnect connector for safety and ease of replacement.

The power on/off switch can be located on the floor under the loco. If you have a critter, the charging jack can also be floor mounted, since you will probably take it off the track for charging. For a full size locomotive and/or tender, you may want to locate the charging jack on the end of the car to enable charging in place on the track. The switch in the charging jack isolates the battery from all other electronics when a jack is plugged in, regardless of the position of the power on/off switch. Note: A G-Scale Graphics Battery Conversion module will greatly simplify the power input wiring and provide screw terminals for connections.

The RailBoss Control board contains a circuit breaker to protect the battery pack from short circuits after the battery input has been properly connected to the board. It will automatically reset when the fault is cleared.

Motor Output
Connect directly to the motor. All other unknown circuitry should be disconnected from the motor. A maximum of 5 amps continuous current is available from the board. Warning! At 5 amps the power transistors on the board (metal tabs) will be extremely hot. Enough to burn you if touched, or melt any plastic they come in contact with.

At power-up the motor output will provide a voltage to the motor that is positive on terminal 20, negative on 21. This is intended to be the forward direction of the locomotive.

Directional Lighting Outputs
Lamps: Terminal 10 provides battery power for Incandescent lamps. So the voltage rating of your lamps must match the battery voltage. When battery voltage exceeds the lamp rating, use a resistor of appropriate value in
series with terminal 10. Multiple lamps may be connected in parallel, but total current draw for either the FWD or REV output should not exceed 500 ma.

LEDs: Terminal 11 provides an 11ma current source for LEDs. No current limiting resistors are required. Connect LEDs; terminal 11 to the anodes(+), and terminals 12 and 13 to the cathodes(-) of the forward and reverse LEDs respectively. To provide constant current to ONE LED, regardless of direction, jumper terminal 12 to 13, and connect the LED anode(+) to terminal 11, and the cathode(-) to either terminal 12 or 13. Multiple LEDs can be connected in series.

Sound Triggers
Opto-isolated outputs are provided for two sound triggers to a sound board. These outputs act like a reed switch, but they are polarity sensitive. Terminal 15 is triggered by Direction stick left, or reed switch 2. Terminal 16 is triggered by Direction stick right, or reed switch 1. (See Operation section)

In most cases the sound board will require a common ground connection and independent bell and horn/whistle connections. So terminals 14- and 16- would both be connected to the sound board common and terminals 15+ and 17+ would be connected to the bell and horn/whistle inputs respectively. When the input is switched to ground, the sound is activated.

<table>
<thead>
<tr>
<th>RailBoss</th>
<th>2K2</th>
<th>PB9</th>
<th>P5T</th>
<th>Sierra</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Whistle +</td>
<td>14</td>
<td>9</td>
<td>T6</td>
</tr>
<tr>
<td>16</td>
<td>Whistle -</td>
<td>16</td>
<td>11</td>
<td>Gnd</td>
</tr>
<tr>
<td>15</td>
<td>Bell +</td>
<td>13</td>
<td>8</td>
<td>T4</td>
</tr>
<tr>
<td>14</td>
<td>Bell -</td>
<td>16</td>
<td>11</td>
<td>Gnd</td>
</tr>
</tbody>
</table>

However, if you have a sound board that requires a common power connection, the RailBoss will also accommodate that. Terminals 15+ and 17+ would both be connected to the sound board power connection. Terminals 14- and 16- would be connected to the bell and horn/whistle inputs respectively. When the input is switched to power, the sound is activated.

Reed Switches
Reed switch 2 at terminal 7 is required for automated stations stops. Reed switch 1 is only required when using the RailBoss to modify the behavior of your sound board when using track magnets. The same two reed switches can operate both the RailBoss and your sound board. Only one reed switch is provided with the RailBoss. (See Operation section)

Reed switches must be installed within 1/4” of track magnets, in either a horizontal or vertical orientation. You can usually mount them on the underside of a truck in the horizontal position parallel with the track. Silicone adhesive works well. Or, they can be vertically mounted through a 1/4” diameter hole in the floor of the vehicle. Do not mount the reed switch below the level of rail tops, as it will hit the rails in turnouts.

Setup and Testing
The on-board green LED can be used to check out your wiring and most of the board functions. This should be all you need to get going, but if you are still having problems and you have a volt-ohm meter you can also take the measurements indicated below.

Power-up (LED ON)
When power is first applied to the board, the LED should be flashing a “heartbeat”; i.e. very short ON pulses. This tells you the power input polarity is correct and the RailBoss Control’s 5V power supply is working. Measure +5.0 ± 0.5 VDC at terminal 1+, 5-. If there is a problem, check the voltage and polarity at terminals 18+, 19-. It should measure between +8.0 and +30.0 VDC.

At Rail-Boss power-up, the motor will momentarily give a “bump” in the forward direction. This is normal. If it bumps in reverse, then you need to reverse the wiring at the motor terminals, 20 & 21.
Transmitter / Receiver Setup

Review the transmitter diagrams on the following pages to determine which style of transmitter you have; i.e. Mode 1 with the throttle on the right, or Mode 2 with the throttle on the left, and get acquainted with the function of each stick.

In most cases, the transmitter servo reversing switches should be set to “normal”, and the trim tabs should ALWAYS be in the mid position. There is no need to ever change them.

Binding -
Each receiver must be “Bound” to its associated transmitter following the radio manufacture’s procedure. This only needs to be done once, or whenever reassigning a receiver/loco to a new transmitter. The minimum connections required for this process are power to the RailBoss, which applies power to the receiver via the 3-wire Throttle cable. A binding plug may also be required in the BAT/Bind position of the receiver. Refer to your transmitter’s manual for binding instructions.

Calibration -
Each receiver and RailBoss must be calibrated to work with its associated transmitter. If you have a Front Light connected to the RailBoss board, this procedure can be done without actually accessing the RailBoss board. Otherwise the LED on the RailBoss board will need to be visible during this procedure.

1. Power-up the RailBoss/Receiver. Observe the PCB LED and the Front Light flashing a “Heartbeat” (short ON pulses).
2. While holding the Tx Direction stick in the full down position, turn on the Tx. Wait for the LED/Front Light to turn ON solid, and then release the stick to center position.
3. The LED/Front Light will now be flashing at a fast pace, indicating you are in the calibration mode.
4. Stroke the Throttle stick from end to end (full UP to full DOWN) several times pausing briefly (1 sec) at each end. Leave the stick in the full DOWN position.
5. Give a momentary DOWN command on the direction stick to exit calibration.
6. The LED/Front Light will flash three times, indicating the loco is ready to run. (If it just turns off, it is waiting for the throttle to return to full down.)

This procedure calibrates the throttle output of the receiver to the RailBoss. It must be done prior to running for the first time and whenever reassigning a receiver/loco to a new transmitter. The other 3 receiver channels are calibrated automatically each time the RailBoss is powered-up.

Throttle Stick
Moving the Throttle stick UP away from the full DOWN position should cause the motor to start turning, with the speed increasing as the stick is moved further up. At power-up, the direction should be forward. The PCB LED should also be off during increases or decreases in speed (Off until momentum allows speed to match speed setting).

Direction Stick
At RailBoss power-up, direction is set to “forward”. After the Tx is turned on and ready to run, the Front Light should be ON (if connected) and the Reverse Light should be OFF. When changing direction with the transmitter, you may hear the relay on the RailBoss click. In reverse, the Reverse Light should be ON, and the Front Light OFF. Direction can only be changed while stopped. Holding the Direction stick full UP or DOWN should cause the PCB LED to turn off.

Momentum Stick
Holding the Momentum Stick full LEFT should cause the PCB LED to turn OFF. Holding it to the RIGHT should cause it to blink OFF momentarily.

Sound Stick
A momentary LEFT or RIGHT on the throttle stick should cause at least a very short blink OFF of the LED. (You may not always get the same response.) When held full LEFT, the Bell outputs at 14 & 15 will be shorted. When held full RIGHT, the Whistle outputs at 16 & 17 will be shorted.

Reed Switches
Close the reed switch with a magnet, or moving the loco over a track magnet, will cause the LED to turn off while the contacts are closed. If not, check the wiring at terminals 6,7,and 8.
Manual Operation (Refer to diagram next page)

Power-Up
When power is applied to both the transmitter (Tx) and receiver (Rx), the first thing they must do is establish a communication link. This process can take anywhere from 2 to 90 secs, depending on which radio you use. Power can be applied in any order (RailBoss/Rx first, or Tx first). However, in order to enter the Throttle Stick Calibration mode or the Throttle Programming mode, you must power up the RailBoss/Rx first.

When the RailBoss receives power, it starts flashing a heartbeat signal to the PCB LED and the Front Light. The heartbeat continues until the Tx and Rx link up. Three longer flashes of the LED/Front Light and sounding of the bell (if connected) indicate the locomotive is ready to run. If the heartbeat stops, and you don’t get the three flashes, the RailBoss is waiting for the throttle to be moved to the full down position.

Start-up Procedure
RailBoss/Rx power ON Heartbeat flashing of LED and Front Light
Throttle Stick full DOWN
Tx power ON After Rx/Tx link, three flashes of LED and Front Light and a bell

At power-up, the locomotive will be stopped, ready to proceed forward. Momentum is off, station stops are disabled and auto track whistle is enabled.

Setting Direction
Direction of the locomotive is set using the direction stick. Direction can only be changed when the locomotive is at a complete stop. There are two options available under DIP programming, parameter 5.

Forward/Reverse - One momentary UP command to select forward
 One momentary DOWN command to select reverse

The throttle is active at all times.

Forward/Neutral/Reverse - From Neutral, one UP command to get into forward. One DOWN command to get back into neutral, and another DOWN command to get into reverse. One UP to get back to neutral. When in neutral, the throttle stick is disabled and you must return it to the full down position in order to change direction. This feature is useful for a transmitter within reach of young children.

Directional Lighting
Front Light is ON in forward, Rear Light is ON in reverse, and both Front and Rear Lights are ON in neutral.

Setting Speed
The throttle stick sets the speed (motor voltage) of the locomotive to the Min Speed setting when full down, and to the Max Speed setting when full up. Everything in between is proportional to the stick position, using 256 speed steps. Min and Max Speed settings are set in Throttle Programming mode. The default settings are Min Speed = 0% battery voltage, and Max Speed = 100% battery voltage.

Turning off the transmitter while running causes the locomotive to continue running at the same speed. This is very convenient for saving transmitter batteries. However, if the throttle stick is moved to a different speed setting while the Transmitter is off, the locomotive will accelerate or decelerate to the new speed setting when the Transmitter is turned back on.

Momentum
"Momentum" is a delayed response to a change in speed setting. This simulates the slow response of a heavy train. The throttle stick is used to switch momentum On and Off.

A momentary LEFT turns momentum OFF. Actually, a small amount of momentum is always applied to prevent gear damage due to rapid throttle stick movement. You may want to turn momentum OFF while doing switching and coupling operations.

A momentary RIGHT turns momentum ON. This engages the momentum rate set via DIP programming parameter 4. This allows you to set the throttle for the desired running speed and watch the train slowly accelerate to that speed.

Momentary commands for momentum should be about 1 second long to insure proper operation.
Emergency Stops
Holding the Momentum stick FULL LEFT for more than 2 seconds will make a quick stop, but not instantaneous. This avoids gear damage due to the real momentum of the train. Return the throttle to full the down position to restore operation. This command is useful when you can't remember if momentum was turned on or not and have no time to think about it.

Automated Station Stops
A momentary UP command on the direction stick while the train is running will enable station stops.

A momentary DOWN command on the direction stick while the train is running will disable station stops.

If you would like to make the train leave the station early (tired of waiting or another train is coming), a momentary Up command while the train is stopped will initiate a departure.

Transmitter Off
The transmitter transmits continuously, whether you are doing anything or not, and this is just a continuous drain on the transmitter batteries. You can turn off the transmitter at any time and the train will continue running at the same speed and performing station stops (if they were enabled). Control will be restored when you turn it back on, following a delay to re-establish the communications link. Note: If the throttle stick is moved while the transmitter off, speed will be changed to the new speed setting when transmitter is turned back on.

Sounding the Bell or Whistle from the Transmitter
A momentary LEFT of the direction stick will sound the bell.

A momentary RIGHT of the direction stick will sound the whistle/horn.

Momentary commands for momentum should be about 1 second long to insure proper operation.

Your sound board may have options available, such as a manual bell or a programmed bell. The manual bell will turn on with a LEFT command and continue ringing until turned off with another LEFT command. The programmed bell will turn on with a LEFT command and then time out and turn off on its own.

If you want to sound your own whistle signals from the transmitter, you should set your sound board for the manual whistle option. The horn or whistle will sound as long as the RIGHT command is maintained. If you have opted for the programmed grade crossing signal, a momentary RIGHT command will initiate it.

In order to use the manual sound triggers, the sound trigger outputs must be connected to your sound board.
Command Summary (Mode 2 Tx, most common in USA)

<table>
<thead>
<tr>
<th>Left Stick</th>
<th>R/C Channel</th>
</tr>
</thead>
</table>
| **Throttle/Speed** | 0 to 100% Speed Proportional to stick position
 Full Down = 0%, Full Up = 100% | Throttle |
| **Momentum** | Momentary Left = Off, Momentary Right = On | Rudder |

<table>
<thead>
<tr>
<th>Right Stick</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>While fully stopped</td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>Momentary Up = Forward, Momentary Down = Reverse</td>
</tr>
<tr>
<td>While running</td>
<td></td>
</tr>
<tr>
<td>Station Stops</td>
<td>Momentary Up = Enable, Momentary Down = Disable</td>
</tr>
<tr>
<td>Auto Whistle</td>
<td>Hold Up = Enable, Hold Down = Disable</td>
</tr>
<tr>
<td>During Tx Power On</td>
<td>Hold Up to enter “Speed Programming” mode</td>
</tr>
<tr>
<td></td>
<td>Hold Down to enter “Throttle Stick Calibration” mode</td>
</tr>
<tr>
<td>Manual Sounds</td>
<td>Momentary Left = Bell, Momentary Right = Whistle/Horn</td>
</tr>
</tbody>
</table>
| **Tx Power On/Off** | Power Off while running maintains speed and automation
 Power On while running restores manual control | |
Command Summary (Mode 1 Tx)

<table>
<thead>
<tr>
<th>Right Stick</th>
<th>R/C Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>Throttle</td>
</tr>
<tr>
<td>0 to 100% Speed</td>
<td>Proportional to stick position</td>
</tr>
<tr>
<td>Full Down = 0%, Full Up = 100%</td>
<td></td>
</tr>
<tr>
<td>Momentum</td>
<td>Aileron</td>
</tr>
<tr>
<td>Momentary Left = Off, Momentary Right = On</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Left Stick</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>While fully stopped</td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>Elevator</td>
</tr>
<tr>
<td>Momentary Up = Forward, Momentary Down = Reverse</td>
<td></td>
</tr>
</tbody>
</table>

While running	
Station Stops	Elevator
Momentary Up = Enable, Momentary Down = Disable	

| **Auto Whistle** | Elevator |
| Hold Up = Enable, Hold Down = Disable | |

| During Tx Power On | Elevator |
| Hold Up to enter “Speed Programming” mode | |

| Hold Down to enter “Throttle Stick Calibration” mode | Elevator |

| **Manual Sounds** | Rudder |
| Momentary Left = Bell, Momentary Right = Whistle/Horn | |

Tx Power On/Off	
Power Off while running maintains speed and automation	
Power On while running restores manual control	
Trouble Shooting Manual Operation

- Nothing seems to be working ...
 Check the power. The LED should be flashing a "heartbeat". You should measure between 8 and 30 volts DC applied to terminals 18(+), 19(-).
 You should measure 5 volts DC on terminals 1(+), 5(-)
 Verify all wiring connections. If there is a short circuit in the motor wiring or on the board, the on-board circuit breaker will trip. Check the large yellow rectangular device on the circuit board (PTC) to see if it is hot. It will automatically reset when the short has been removed. If you can measure the 5 volts above, the breaker is not tripped.

 Repeat the "Binding" process for the transmitter and receiver. The Receiver LED should come on a few seconds (2-20 secs) after turning on the transmitter.

- My locomotive just quits, then it will start working again after awhile.
 The control board may be overheating; especially if it is a hot day and your battery voltage is greater than about 15 volts. Increase ventilation to the control board, or reduce your battery voltage, if possible.

- The transmitter / receiver doesn't work at all
 Check the batteries in the transmitter.
 Check the receiver wiring: A connector may be backwards or plugged into the wrong place. The white wires should be towards the inside of the receiver.

- One or more of the control sticks work backwards ...
 Make sure the transmitter servo reversing switches are all set for "Normal".

- The loco doesn't start moving until I move the throttle stick is way off the bottom ...
 Recalibrate the throttle stick.
 Program the Min Speed setting to a higher value.

- The loco starts moving even though I have the throttle stick at full down ...
 Program the Min Speed setting to a lower value.

- The direction commands are backwards ...
 Reverse the wires at the motor output, terminals 20 & 21.
 When power is first applied to the RailBoss, the loco will jerk forward slightly when the wiring is correct.
 Make sure the transmitter servo reversing switches are all set for "Normal".
 Change the Motor Polarity using the Throttle Programming Command (4).

- The loco won't run as fast as I like even though I keep trying to increase the speed setting ...
 Maximum speed is determined by your battery voltage. You need more cells/voltage.

- The speed setting seems to be changing on me...
 The "Speed Setting" is actually a "% of battery voltage setting". Hence, as the battery voltage decreases during discharge, the speed will slow down some. Also, changes in load, such as adding more rolling stock to the train, will decrease speed slightly.

 (Also, see Testing on page 8)
Automated Operation

An automated station stop slows down the train, waits at the station for a predetermined time, then accelerates back to its original running speed. Station stops add interest to your open house or public displays.

Automated operation is easily achieved with the RailBoss R/C Control. You just need to add a reed switch to your locomotive and place some track magnets on your layout.

Automated station stops are initiated by a track magnet placed ahead of the station. The magnet initiates deceleration to a stop. You can make as many stops as you like, one magnet per station. When running in both directions, two magnets per station are required, one for each direction. Place the magnets such that the loco stops at the same location when running from either direction. The magnet in front of the locomotive when leaving the station will be ignored.

The distance the magnet is located from the station will depend on your running speed. Some trial and error will be required to find the proper location and/or speed.

Automated reversing is accomplished using a second magnet placed about 6” after the decel magnet. This second trigger will cause the loco to depart the station in the opposite direction. Magnet spacing requirements vary with speed of the loco. 6” or greater is a good starting point. As long as the second magnet is crossed prior to coming to a full stop, it should work. Caution: Provide end of track bumpers or wheels chocks, just in case.

Radio Shack 1/2” round ceramic magnets make good track magnets. They can be glued to the top of a rail tie or placed between the ties. Any magnet of suitable size and strength can be used. But they must be located no more than 1/4” from the reed switch passing overhead. Track magnets mounted higher than the rail tops will be susceptible to damage by track cleaners and snow plows. We recommend using movable magnets (next page).

Station stops are enabled or disabled from the transmitter while the train is running. A momentary UP command on the direction stick to enable. A momentary DOWN command on the direction stick to disable. During a station stop, transmitter commands are disabled. However, you can give a momentary UP command on the direction stick to leave the station early. Station stops are enabled at power-on.

Sound Systems

"But I already use magnets to trigger my sound system!" You may have existing track magnets used to trigger the bell and whistle of your sound system. For example; whistle magnet on the right, bell on the left. RailBoss can share these same magnets fairly easily. Install your RailBoss reed switch on the same side you use to trigger the bell. The bell will ring as you approach the station, and the whistle will still blow in your favorite locations.
There are several ways to connect your reed switches. Reed switch 1 (terminals 6,9) is required for automated station stops. Reed switch 1 will also trigger the bell (if so desired) via the bell sound trigger output to the sound board. The whistle reed switch can remain connected to your sound board, in parallel with the RailBoss sound trigger, and it will operate as normal.

Or, it can be connected as Reed switch 2 (terminals 7,9) and trigger the sound board via the whistle sound trigger. The advantage here is, the RailBoss has some optional randomization functions, which will only sound the whistle a certain percentage of the time the reed switch passes over the track magnet. The result? No more repetitive whistle blowing, lap after lap. It reduces the overall noise, and makes things less predictable.

Movable Magnets

Being able to easily move your magnets to new track locations makes it much easier to set up your station stops, or change things as the need arises. If you just place a loose magnet in between ties, the metal of the loco may pick it up as it passes. Glue your magnets to a strip of styrene as shown. When placed under the rails, the magnet will stay in place. Magnet can be on the left or right by simply rotating the strip.

Trouble Shooting Automated Operation

- Make sure you have enabled station stops from the transmitter (UP on the throttle stick while running).
- Loco fails to stop after crossing a single decel magnet. Verify proper installation of reed switch and magnet.
- If the loco fails to reverse after crossing two magnets, the magnets are too close together and/or the loco speed is too fast. *(Hence the need to protect the end of point-to-point track with a bumper or derail).*
- The loco will also fail to reverse if the magnets are too far apart and/or the loco is running too slow. It will cross the first magnet, but stop prior to the second, and treat it as a station stop.
- If you can’t get the loco to make a proper intermediate station stop in both directions after making the above adjustments, it may be due to excessive grade of the track. Intermediate station stops work best with a flat approach from both directions but should tolerate 3% grades.
- The location of the station stop changes over time. Magnet locations are only precise for one given speed setting. As the battery discharges, the loco will slow somewhat, even though the speed setting has not been
DIP Switch Programming

Some of the operating parameters of the Enhanced RailBoss can be modified to meet your individual needs. No programming is necessary to get your system up and running, only to modify it, if so desired.

User configurable parameters can be programmed using the 4-position DIP switch, on-board push-button switch, and on-board LED. The DIP switch selects the parameter to be programmed, and the LED flashes the currently selected option. See the programming chart following this discussion for specific instructions.

Parameter 0
Station Stop Dwell Time
The elapsed time spent from a full stop at the station to departure.

Parameter 1
Station Stop Accel/Decel Time
The time it takes to decelerate to a full stop after crossing the station stop magnet. Use this adjustment not only to make the stop look prototypical, but also to match the characteristics of other locomotives making station stops using the same magnets. Thus, you don’t have to move the magnets for each locomotive.

Parameter 2
Whistle Operation from Reed Switch 2
Reed switch 2 at terminals 6&9, triggers the output at terminals 16&17. By connecting your whistle/horn reed switch to the RailBoss, instead of directly to the sound board, the RailBoss can now control its operation. The whistle/horn, especially the grade crossing whistle, gets pretty annoying in a hurry if it sounds every X seconds, lap after lap, all day long at your open house. This parameter allows you to control the percentage of time, that it actually sounds; e.g. at the 50% setting, after crossing the whistle magnet 10 times, the whistle will have only sounded about 5 times. The triggers are random events, and thus very unpredictable, adding character, and a bit of mystery to your layout.

Parameter 3
Station Stops & Bell from Reed Switch 1
Reed switch 1, at terminals 7&9, initiates a station stop, if enabled from the transmitter, and also triggers the output at terminals 14&15, normally connected to the bell trigger of you sound board. Like the random whistle function described in Parameter 2, you can randomize your station stops, adding interest for you and your visitors.

Note: When operating in point-to-point trolley mode, using the reversing magnets, you must have parameter 3 set for 100%. Otherwise, the loco will run off the end of the track, as the RailBoss will ignore the magnets X% of the time.

Parameter 4
Throttle Momentum
This parameter sets the amount of momentum applied to the throttle when the momentum function is turned ON.

Parameter 5
Direction Control
This determines how the direction stick commands will operate.

Forward/Reverse: Up for Forward, Down for Reverse. The throttle is always engaged.

Forward/Neutral/Reverse: Up for Forward, down back to Neutral, down again to get into Reverse. Up is back to neutral. The throttle is disabled while in Neutral.

Parameters 6 thru 15
Are not used at this time
Selecting these parameters on the DIP switch while in programming mode will result in the LED staying off; no flashing. Just select a valid parameter to continue programming.
Option Parameter 0 - Station Stop Dwell Time
1 15 secs
2 30 secs [factory setting]
3 45 secs
4 60 secs

Option Parameter 1 - Station Stop Accel/Decel Time
1 Fastest
2 Faster
3 [factory setting]
4 Slower
5 Slowest

Option Parameter 2 - Whistle Operation from Reed Switch 2
1 100% (Always triggers via track magnet)
2 75%
3 50%
4 25%
5 0% (Disabled)

Option Parameter 3 Station Stops & Bell from Reed Switch 1
1 100% (Always triggers) / Trolley mode [factory setting]
2 75%
3 50%
4 25%

Option Parameter 4 - Throttle Momentum
1 Fastest Response (Off)
2 Faster
3 [Factory Setting]
4 Slower
5 Slowest

Option Parameter 5 - Direction Control
1 Forward / Reverse (No Neutral)
2 Forward / Neutral / Reverse

DIP Programming Procedure

User configurable parameters can be programmed using the 4-position DIP switch, on-board push-button switch, and on-board LED.

Enter Programming Mode
With RailBoss power on, momentarily press the yellow push-button located next to the DIP switch. The LED will begin flashing.

Select Parameter
Select the parameter you wish to view or program using the DIP switch. (the white square indicates position of the switch; e.g. for parameter 0, all switches are in the down or off position.

View Current Option Code
The LED will repeatedly flash the option code for the currently selected parameter; e.g. two flashes followed by a pause indicate option 2.

Change the Option Code
Momentarily press the push-button during the pause to advance the option to the next higher number, until you get the desired number of flashes.

Save the Option Code
Press and hold down the push-button for about 4 secs until the LED starts flashing rapidly, which indicates the save is complete.

Select the next Parameter
Repeat the above as needed to view or make changes to other parameters. Note: If an invalid parameter number is selected, the LED will stop flashing.

Exit Programming Mode
Turn off RailBoss power.

Upon return to power, the new options will be activated.

2.4GHZ Enhanced RailBoss
Throttle Programming Functions

Characteristics of the throttle can be changed to meet your operating requirements. Most of you will never need this. But if you do, with a little reading and some practice, you should find it fairly easy to do.

Zero Speed / Starting Voltage (1)

This setting determines the % of battery voltage applied to the motor when the throttle stick is at the full down position. Many locomotive motors require a certain amount a voltage to get started. Hence, the throttle stick will have to be moved up a ways before the train starts moving. Increase the Starting Voltage until the train just starts moving, and then back it down slightly. Now the train will start moving at the bottom of the throttle stick travel.

Max Speed / Voltage (2)

This setting determines the % of battery voltage applied to the motor when the throttle stick is at the full up position. Setting a Max Speed of less than 100% is useful for speed limiting your locomotive; e.g. when children are running the train.

Speed Matching (1,2)

If you intend to double-head or power your train with multiple locomotives, you will need to match the speed characteristics of each locomotive to the other. i.e. they all need to run at close to the same speed, regardless of throttle position. This can be done adjusting the Zero Speed and Max Speed settings as required for each locomotive.

Active Throttle (3)

There are two ways to change settings. 1) With a “Dead Throttle”, using the throttle stick to indicate the desired % of battery voltage (0-100% battery voltage = 0 to 100% Throttle Stick position). Or 2) With an “Active Throttle”, controlling speed of the locomotive to visualize the setting. Warning: When using active throttle programming, there is no momentum applied to the throttle. Speed response will be quick, so use care in changing the throttle stick position. This is a toggled setting. Each time it is saved, it will change the state; from Active to Dead or, Dead to Active.

Motor Polarity (4)

When running multiple unit locos, you may want to run one unit facing backwards from the other. This setting allows you to reverse the polarity of the motor, so both units will move in the same direction. This is a toggled setting. Each time it is saved, it will change the state; from Normal to Reversed, or Reversed to Normal.

Default Settings (5)

Don’t worry! In the event things get messed up, you can always restore them back to the default factory settings.

User Settings (6,7)

Once you get a setup you like, save it. This allows you to continue experimenting or changing things depending on what you are doing at the time. Then get back your settings with one command. Starting Voltage, Max Speed, Active Throttle, and Motor Polarity settings will be saved.

Throttle Programming Procedure

Power-up the Control/Receiver (Rx).

The PCB LED and the Front Light (if equipped) will start blinking a ‘heartbeat” (quick on time, long off time) to indicate that power is on and it is waiting for the transmitter.

Power-up the Transmitter (Tx) while holding the direction stick UP. Continue to hold it UP until the PCB LED stays ON solid. This may take anywhere from 5 to 20 secs (the amount of time it takes for the Tx to link with the Rx).

When the direction stick is released the PCB LED and Front Light will turn off, indicating it is ready for Throttle Programming.

If “Active Throttle” is enabled, you will be able to control the speed of the locomotive in the forward direction only. Caution: There will be no momentum and throttle response will be quick.
If “Active Throttle” is disabled, you will use the throttle to set the % of battery voltage desired. The stroke of the throttle stick represents 0 to 100% battery voltage.

To program a speed point, set the throttle to the desired speed or position. Then give X momentary UP commands using the direction stick to save setting X. The lights will flash once for each UP command.

After entering the number of UPs for your command, pause and wait for the RailBoss to acknowledge the entry by flashing the LED and Front Light X times, indicating your setting has been successfully saved. They will not flash if you entered an invalid number.

No flashing may also indicate an invalid request; for example; you tried to set Max Speed at a throttle position less than the current Min Speed setting.

You can program any of the 7 Throttle functions in any order you like, as many as you like while in Throttle Programming mode.

To exit this mode, the Throttle stick must be at the full down position. Then, give a momentary DOWN command using the direction stick. The RailBoss will flash the Front Light 3 times, indicating you are ready to run using the new settings.

Example: Set the Starting Voltage.
After entering the Throttle Programming mode, the Front Light goes out. Set the throttle stick for the desired speed or position. Give one momentary UP command using the direction stick. The RailBoss will flash the Front Light once, indicating the new value has been saved. Return the throttle to full down. Give a momentary DOWN command on the direction stick to exit Throttle Programming mode. The Front Light will flash 3 times indicating you are ready to run. You should now have the new Starting Voltage setting you programmed when the throttle is at the full down position.

Practice the programming sequence by restoring default settings using command 5.

Throttle Programming Command Summary

<table>
<thead>
<tr>
<th>Momentary UP Commands on the Direction Stick</th>
<th>Function</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zero Speed / Starting Voltage (% battery voltage, throttle stick down)</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>Max Speed / Max Voltage (% battery voltage, throttle stick up)</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>Toggle Active Throttle On/Off</td>
<td>Off</td>
</tr>
<tr>
<td>4</td>
<td>Toggle Motor Polarity Normal/Reverse</td>
<td>Normal</td>
</tr>
<tr>
<td>5</td>
<td>Restore Default Settings (1-4 above)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Restore User Settings (Saved by 7 below)</td>
<td>Same as 1-4 defaults until changed by user</td>
</tr>
<tr>
<td>7</td>
<td>Save User Settings (as programmed using functions 1-4 above)</td>
<td></td>
</tr>
<tr>
<td>Enter Throttle Programming</td>
<td>Power-On Tx while holding Direction stick full UP</td>
<td>Wait for solid light, then release</td>
</tr>
<tr>
<td>Exit Throttle Programming</td>
<td>Throttle full Down and Momentary Down on Direction stick.</td>
<td>Three flashes indicate ready to run with new settings</td>
</tr>
</tbody>
</table>
2.4GHZ Enhanced RailBoss R/C Specifications
Board Revision “New”

Mechanical
Physical Size: PCB – 2.9” X 1.9", Max component height – 1.0”.
User Connections: Screw clamp terminal strips accept individual wires, 30 to 20 AWG.
Requires a 1/16” or 5/64” slotted screwdriver

Electrical
Power Input from battery pack (Terminals 18+,19-)
8.0V min to 30.0V max
8-20 cell battery packs
Nominal 9.6V to 24.0V battery packs (1.2V per cell)
8 cells can discharge to 8.0V (1.0V per cell)
20 cells can charge to 30.0V (1.5V per cell)
Over current protection - PTC (automatically resets upon removal of fault)
Reverse polarity protection (prevents damage, but will not operate)

Power Consumption (due to board, no motor load)
Forward motor direction: < 30 ma (30V supply)
Reverse motor direction: < 130 ma (Relay energized, 30V supply))

Motor Output (Terminals 20,21)
5 amps max, continuous
PWM (Pulse Width Modulated), 20 KHZ
Polarity reversal via relay contacts
Max amplitude: Battery voltage minus driver loss
Typical voltage loss across driver: 0.2V @15V, 1.5A: 0.6V @15V, 5.0A.

+5V output to Receiver (Terminals 1+,5-)
For use as shown in wiring diagram only. No other loads should be connected to this 5V supply.

Control Inputs
4 Receiver Data Inputs; Elevator/Direction, Throttle/Speed, Rudder/Momentum, Ailerons/Sound
Digital Proportional servo data from any standard hobby radio, 3V or 5V logic
Reed Switches, normally open, momentary close
Bell/Station stops, Terminal 6,9
Whistle, Terminal 7,9

Control Outputs
Sound Triggers: Opto-isolated
Whistle/Horn: Terminal 17+(collector), 16-(emitter)
Bell: Terminal 15+(collector), 14-(emitter)

LED/Lamp Drivers: Max load = 500 ma
LED current source: Terminal 11 = 11 ma
Lamp voltage source: Terminal 10 = battery voltage at power input
Forward Lamp/LED-(open collector) Terminal 12
Reverse Lamp/LED-(open collector) Terminal 13

Radio Rx and Tx (not supplied by G-Scale Graphics)
Any 4-channel digital proportional radio system will probably work in general, but only those systems recommended by G-Scale Graphics have been tested for 100% compatibility. See next page for specifics.

Firmware (Factory programmable)
ERB24

Battery Power Accessories (available from G-Scale Graphics)
Battery Conversion Module; (built-in Power on/off Sw, Charging Jack, 5A fuse, power distribution)
Power On/Off Switch: Sub-Miniature w/short handle, SPDT (On-On), 3A, 28 VDC
Charging Jack: 2.5mm I.D., 5.5mm O.D., 5A, w/switch (mating power plug: Radio Shack #274-1573

Warranty - 12 months from date of purchase. Repairs can be made for a modest fee.
Recommended Radio Systems

We do not sell radio systems. There are many low cost 2.4 GHz hobby radios available, with more coming all the time. Only 4-Channels are required, with one being a digital proportional throttle. Either Mode 1 (throttle on the right) or Mode 2 (throttle on the left). 2.4GHz is approved for both surface and air use.

If you are installing your receiver in a metal body, select a one with an extended antenna. The last inch is the actual antenna, which needs to protrude outside of the metal body.

Listed in order of preference, but all will perform satisfactorily.

Spektrum
Any of the products in the Spektrum DX line will work, however, the DX5E is the most economical. The AR500 receiver is extremely small and compact. This line is assumed to be of the highest quality and most reliable.

- DX5E Transmitter and AR500 Receiver $99 www.HorizonHobbies.com or Local Hobby Shop
- AR500 Receiver (Full range, extended antenna) $60
- AR6110 Receiver (Park Flyer range) $50

E-Sky
EK2-0404G 4-Channel Transmitter $40 www.BPHobbies.com
EK2-0424 6-Channel Receiver (end pins) $17
EK2-0426 6-Channel Receiver (top pins) $19 www.helidirect.com

These will also work ...

Exceed
Same electronics as the Hobby King, but available in the USA. Requires PC interface to set servo polarity.
- 2.4GHz 6-Channel Transmitter and Receiver $45 www.HobbyPartz.com
- 6-Channel Receiver $15

Hobby King
Made in and sold from China, but there are many satisfied customers. Shipping costs may be high.
- Hobby King T4A 4-Channel Transmitter and Receiver $30 www.HobbyCity.com
- Hobby King T6A 6-Channel Transmitter and Receiver $33
- Hobby King 6-Channel Receiver $15

2.4GHZ RailBoss R/C Product Comparison

<table>
<thead>
<tr>
<th></th>
<th>R/C Channels</th>
<th>Speed & Direction Control</th>
<th>Momentum Control</th>
<th>Sound Control</th>
<th>DIP Switch Programming</th>
<th>Throttle Programming</th>
<th>Directional Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>4 Parameters</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Enhanced</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>6 Parameters</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
2.4 GHZ Enhanced RailBoss R/C Wiring Diagram

Notes:
1) The circuit in Fig 1, or variations of it, may be substituted for the Battery Conversion Module. The RailBoss has a 7A retransferable fuse on-board, but an external fast acting fuse is also recommended. Power input is protected from reverse polarity damage, but the RailBoss will not operate.

2) Rx cables: White wires to inside post of Rx. The BAT plug is not used, except for binding Spektrum receivers. Wiring shown is for a Mode 2 Tx. For Mode 1, swap the Rudd and Aile connections at the RailBoss.

3) Opto-Isolated sound triggers connect to the reed switch inputs of your sound board. Typically, the – wires connect to sound board common (Gnd), and the + wires to the bell and whistle inputs. In some cases, it may be the other way around.

4) Optional: A Momentary SPST (normally open) push button switch may be connected across the inside and outside BAT posts for use as a remote binding switch.

5) Do not connect the RailBoss Motor output directly to a Sierra Sound board (others are OK). You must use an RCS SSI-12V5 isolation board. The RailBoss Bell and Whistle outputs are compatible.
Sierra Sound System Requires Isolation Board

Due to the design of the Sierra Sound Board, the RailBoss motor output is not directly compatible with the Sierra inputs. An RCS SSI-12V5 board must be used to provide power and motor isolation to the Sierra.

Sierra programming:
Speed sync source (steam boards) must be set for “Auto”.
Bell and Whistle controls must be set for “Sensor Switch”.

No Battery or connections required at the 3-pin battery connector.